
ISRAEL JOURNAL OF MATHEMATICS, Vol. 42, No. 3, 1982 

A CHARACTERIZATION OF 
NORMAL OPERATORS* 

BY 

SHMUEL FRIEDLAND 

ABSTRACT 

Let A be a bounded linear operator in a Hilbert space. If A is normal then 
log[[ eA'u [I and loglleA"u II are convex functions for all u~ 0. In this paper we 
prove that these properties characterize normal operators. 

I. Introduction 

Let  H be a H i lbe r t  space  over  the complex  number s  C with an inner  p roduc t  

(x, y) .  A s s u m e  that  A : H ~ H is a b o u n d e d  l inear  ope ra to r .  A s t r a igh t fo rward  

ca lcula t ion  shows (see the next  sect ion)  

LEMMA 1. Let A : H ~ H be a bounded linear operator. I f  A *A - A A  * is 

non-negative definite then log II e A'u II is convex on R for all u ~ O. 

Thus if a is no rma l  then logl leA'u  II and  log l l eA"u  Jl a re  convex.  H o w e v e r ,  

there  are  non -no rma l  o p e r a t o r s  A such that  0 <= A *A - A A  *. Here ,  as usual ,  

for  se l f -ad jo in t  o p e r a t o r s  S, T the inequa l i ty  S =< T deno te s  that  T - S  is a 

non-nega t ive  def ini te  o p e r a t o r .  F o r  examp le  let H = 12 and choose  A to be the  

shift o p e r a t o r  A (xl,  x2," �9 �9 ) = (0, x t, x2," �9 �9 ). In this case log IleA"u II is not  

convex for  u = (0, 1 ,0 , .  �9 �9 ). This  s i tua t ion  can not  hold  in a finite d imens iona l  H. 

More  prec ise ly  we have  

THEOREM 1. Let A = P  + iQ, where P and Q are bounded self-adjoint 

operators. Assume that P has only a point spectrum (i.e. H has an orthonormal 

basis consisting of eigen-elements of P ). Then A is normal if and only if 

d 2 
(1) dt---7 (loglleA'ull)(O)>=O, [or all u~ O. 
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Our main result is 

THEOREM 2. Let A : H --o H be a bounded linear operator. Then A is normal if 

and only if (1) and 

d 2 
(2) (log IleA"u 11)(0)---- 0, for all u ~ O, 

hold. 

We conjecture 

CONJECTURE. Assume that (1) holds. Then 0 <= A *A - A A  * 

2. Proo|s 

Using the group properties of e A '  w e  easily deduce 

LEMMA 2. Let A : H ~  H be a bounded linear operator. Then loglleA'ull is 

convex on R for all u ~ 0 if and only if (1) holds. 

A straightforward calculation shows 

d 2 
dt----5 (loglleA'u II)(0) 

= l(u, u )-2[((A 2 + A .z + 2A *A )u, u)(u, u ) - ((A + A *)u, u )2]. 

Thus (1) is equivalent to the inequality 

(3) ((A + A *)u, u) 2 -< ((A 2 + A .2 + 2A *A )u, u)(u, u). 

The Cauchy-Schwarz inequality yields 

((A + A *)u, u) 2 =< ((A + A *)2u, u)(u, u). 

As 
(A + A *)2= A 2 + A *2 + 2A *A - ( A  *A - A A  *) 

the assumption that A *A - A A  * ~ 0 implies the inequality (3). This establishes 

Lemma 1. 

To give an equivalent form of the inequality (3) we need the following lemma. 

LEMMA 3. Let R, S, T : H ~ H be self -adjoint non-negative definite operators. 

Then 

(4) (Ru, u)2<=(Su, u)(Tu, u), forall  u E H  

if and only if 
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(5) 2R <-_ a 'S + a T  

for all positive a. 

PROOF. The inequality (4) implies (5) in view of arithmetic-geometric in- 

equality. Suppose that (5) holds. If (Su, u) = 0 then by letting a tend to zero we 

deduce that (Ru, u ) =  0. Thus we may assume that (Su, u)(Tu, u)>O. In that 

case choose a = [(Su, u)/(Tu, u)]�89 to obtain (4). �9 

LEMMA 4. Let A = P + iQ, where P and Q are self-adjoint. Then (3) is 

equivalent to the inequality 

(6) 

for all real a. 

PROOF. A 

i -~ (QP - pQ ) < (P - aI)  2 

straightforward computation shows that the inequality (3) is 

invariant under the transformation A --~ A + toI. So we may assume that P -> 0. 

Also, in terms of P and Q, (3) becomes 

(Pu, u)2<= P2+-~(PQ-QP) u,u (u,u). 

In view of Lemma 3 the above inequality is equivalent to (6) for a > 0. As 

P > 0 ,  (6) trivially holds also for a =<0. Again (6) is invariant under the 

transformation A ~ A + toI. The proof of the lemma is completed. �9 

LEMMA 5. Let P, Q : H --~ H be bounded self-adjoint operators. Assume that 

Pu = au, u ~ 0 and suppose that (6) holds. Then 

(7) e(Ou) = ~(Ou). 

PROOF. Let y = u + s x ,  where s E C a n d  ( u , x ) = 0 .  As 

(Bu, u)=((P-alyu,  u)=((P-aI)2u, x)=O, B = 2 ( O P - P O ) ,  

(6) implies 

2 Re{i(Bu, x)} + Is 12(Bx, x)  <= Is 12((P - aI)2x, x). 

Since s is arbitrary we obtain that (Bu, x) = 0 if (u, x) = 0. So Bu = flu. Finally 

the equality (Bu, u) ~ 0 yields/3 = 0, i.e., Bu = 0. This proves (7). �9 

PROOF OF THEOREM 1. As P has only a point spectrum H decomposes to a 

direct sum of invariant eigen-subspaces of P: 
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H = Z �9 HA, ( e -  A*)H  =0. ;~(e) 

Lemma 5 implies that QH~ C HA. That is PQ = Q P  which is equivalent to the 

normality of A. �9 

Assume now that log II e A'u II and log IleA"u II are convex on R for all u ~ 0. 

According to Lemma 4 these conditions are equivalent to 

(8) - ( P  - a I ) :  <= 2 ( Q P  - P Q )  < ( P  - aI)2 

for all a U R. Then Theorem 2 follows from our last theorem. 

THEOREM 3. 

that 

(9) 

Let  B, P : H---> H be bounded sel f -adjoint  operators. A s s u m e  

- (P - a I )  ~ <= B <-_ (P - a I )  ~, I~ = 2m/(21 - 1) 

[or all real or, where m >= l >->_ 1 are integers. Then B = O. 

PROOF�9 Suppose that Pu = au. Then (9) yields (Bu, u ) = 0 .  Apply the 

arguments of the proof of Lemma 5 to deduce Bu- - -0 .  Decompose H = 

H~E])H2, PHi C_. Hi such that H2 has an orthonormal basis consisting of 

eigen-elements of P and H~ - -  the orthogonal complement of/-/2 - -  does not 

contain any eigen-elements of P. Thus BH2 = 0. Therefore it is enough to assume 

that P has only a continuous spectrum. Without restriction in generality we may 

assume that the spectrum of P lies in [0, 1]. Consider the spectral decomposition 
of P 

Let 

f0 I P = XdE( ). 

f 
u n  

Ei = d E ( A ) ,  i = 1 , '"  ",n. 
J ( i - l ) / n  

Thus 

I = ~ E,, E,Ej = ~,jEj, i,j = 1, . .  -, n. 

Choose a = ( 2 i -  1)/2n. Then (9) yields 

(10) - (2n)-~E, _- EiBE, <- (2n)-~Ei. 

Let y = u + sy, u E EiH, y E ( I  - EI)H.  Then for the same choice of a, (9) 

implies 

I(Bu, u)+. 2 Re{s(By, u)}+ Is I2(By, y){ _-< (2n)-"(u, u ) +  Is ]:(y, y). 
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The same inequality applies if we replace s by - s .  Combine these two 

inequalities to get 

21Re{s(By, u)}J =< (2n)-" (u, u) + Is 12(y, y). 

Choose Is J = (2n)-~/2, arg s = - arg(By, u)  to deduce 

(11) J(By, u)l<(2n)-"/2[(u,u)+(y,y)]/2, u EE,H, y E ( I - E , ) H .  

Let A E o-(B). We claim that 

(12) ]A J< 3(2n) -'~-')'2. 

Indeed, there exists x E H such that 

][Bx-,~x]l=<(2n) -~/2, ]]xll-- 1. 

As II x II 2 = Y T=, II E,x II = = 1 we may a s s u m e  that II Ejx II ---- n-~ for s o m e  1 =< j =< n. So 

IIE, B x  - ,XE, x II--- (2n) .,2. 
Thus 

IX I -  -< V'-nn((2n) -'*'~ +]IE, Bx II). 

We now estimate IIEjB II. Clearly 

IIE, BII-- sup Re{(EjBv, w)}= sup Re{(EjBv, Ejw)} 
IMI=II-`II = l Ilvll=llEjwll = 1 

= sup Re{(EiBEiv, Eiw )} + sup Re{(EjB (I - Ei)o, Ejw)}. 
IIEi~ I1~11Eiw II= 1 II(l- E i)v II=llE/"ll= l 

In view of (10) and (11) we get 

sup Re{(EjBEjo, Ejw )}_-< (2n )-% 
IJEjv II:llEiw II= 1 

sup Re{(EjB (I - Ej)o, Ejw)} _-__ (2n)-,,2. 
II( l - Ei  ) v l l = l l E i w  lJ= 1 

Combine the above inequalities to deduce (12). As n is arbitrary and/x > 1, (12) 

implies t r(B) = {0}. 

As B is self-adjoint we conclude that B = 0. 

Added in proof. It was pointed out by C. Foia~ that, following the results of 

the paper, an operator A from a Banach space B to itself is defined to be normal 

if loglleA'u II and loglleA"g I1" are convex for all 0 ~ u E B, 0 ~ g E B*(II. I1" is the 
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conjugate norm on B*). Furthermore a normal A is called hermitian if the 

spectrum of A is contained in the real line. The properties of these operators will 

be studied elsewhere. 
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